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In an attempt to derive the electronic structure of narrow-band systems, we extend the periodic Anderson
model by exploiting the Falicov–Kimball–Hubbard interactions. The dynamical mean-field theory is used to
obtain the spectral densities and self-energies of the combined model. We show that correlated orbitals become
locally entangled due to composite orbital rehybridization. This many-orbital quantum phenomenon is accom-
panied by a continuous metal-insulator transition away from half-filling. Our results are relevant for the
understanding of the role of the multiorbital Kondo screening processes in generating local orbital entangle-
ment in Kondo systems.
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I. INTRODUCTION

The periodic Anderson model �PAM�1 and the Falicov-
Kimball model �FKM�2 were introduced in the 1960s to ex-
plore the correlated nature of rare-earth and transition-metal
compounds. In these fascinating models, there are two types
of electronic states: a localized f level, which does not over-
lap with neighboring electronic sites, and a delocalized con-
duction d band. The localized f electrons in PAM strongly
interact with each other via the on-site Coulomb interaction
Uf f, which forbids double occupancy of the heavy particles,
and the conduction electrons are assumed to be uncorrelated,
Udd=0. The model proposed by Falicov and Kimball is
based on similar assumptions. However, in this model, Uf f is
often set to infinity and the remaining Coulomb interaction
takes place between electrons on different orbitals �Udf�,
when a conduction and a localized electron occupy the same
lattice site. In PAM, the on-site hybridization V mixes the
localized states with the conduction band, providing a theo-
retical basis for the understanding of the band-gap formation
in heavy-fermion semiconductors.3

Historically, the valence fluctuation phenomenon and its
relation to various limiting cases of Eq. �1� below were ad-
dressed in the early 1980s.4,5 We recall, for example, that the
influence of the interorbital Coulomb interaction Udf on the
electronic phase transitions in Ce- and the insulator-metal
transition in Sm-based compounds were investigated within
the Falicov-Kimball framework.6 In addition, the continuous
metal-insulator transition of the spinless FKM accounts for
several physical responses in YbInCu4 �Ref. 7� and
EuNi2�Si1−xGex�2 �Ref. 8� compounds. The regular PAM, on
the other hand, has been used to describe electronic and mag-
netic properties of Kondo insulators.9 In its canonical form, it
explains, for example, the heavy-electron masses found in 4f
and 5f compounds10 �heavy fermions� and the nature of their
insulating state, which is attributed to the df hybridization V.
Indeed, it is widely believed that in Kondo insulators, the
hybridization V �with or without k dependence� is respon-
sible for the band-gap formation in the one-particle spectral
function in a way similar to what is seen in normal semicon-
ductors. However, the charge gap, which is of the order of V
in the free electron limit, is smeared to a pseudogap by
strong f-electron spin fluctuations in the Kondo insulating
regime.

In recent years, various theoretical works have dealt with
the formation of spin and orbital entanglement in PAM and
Kondo-based models.11,12 Of great interest here are real
solid-state devices, where the entanglement between mag-
netic impurities is linked to orbital degrees of freedom of
delocalized electronic carriers.13 On the fundamental side, it
is now well accepted that entanglement �or the quantum-
mechanical correlation between subelectronic systems� plays
an important role in a number of quantum information
schemes.14 Moreover, due to its intrinsic quantum nature,
this generic effect might be useful to identify quantum phase
transitions �QPTs� in correlated fermionic systems.15 We re-
call that it is currently under debate how electronic correla-
tions influence the critical behavior of a collective QPT.15,16

With this in mind, in this work, we show how incorporation
of interorbital charge and spin fluctuations introduces a co-
herent superposition of local electronic states �multiparticle
entanglement� characteristic of PAM11 and related �Kondo�
models.12 We explore the evolution of charge gaps and the
correlated nature of the orbital states in this quantum regime,
providing a way to visualize the dynamical nature of an or-
bital entangled state and how it is created in periodic systems
governed by strong electron-electron interactions.

II. EXTENDED MODEL AND SOLUTION

The combined version of the PAM and FKM first intro-
duced in the context of mixed valence compounds4 reads

H = − �
ij,�

tijdi�
† dj� − ��

i,�
�ni�

d + ni�
f � + Ef�

i,�
ni�

f + Uf f�
i

ni↑
f ni↓

f

+ V�
i,�

�di�
† f i� + f i�

† di�� + Udf �
i,���

ni�
d ni��
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Here, di�
† �f i�

† � is the creation operator for the conduction
�localized� electrons of spin � at site i. tij is the hopping
matrix element between sites i and j, Ef is the f-electron
on-site energy, and � is the chemical potential, which pre-
serves the total number of electrons ntot=���n�

d�+ �n�
f � at

each lattice site.
This model accounts for the nontrivial effects arising from

the interplay between the interorbital electron-electron inter-
actions Udf and the hybridization V. The role of these two
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competing terms in the dynamical charge fluctuations in the
Kondo lattices was recently addressed within the numerical
renormalization group formalism.17 The two-orbital Hamil-
tonian H �Eq. �1�� was further generalized by including the
on-site Coulomb interaction in the conduction band Udd
along with the Hund coupling JH.18,19 Interestingly, at half-
filling, a transition between the Mott-Hubbard and the Kondo
insulating states was found in Ref. 19. However, to the best
of our knowledge, the role of orbital rehybridization in gen-
erating quantum local �fd� entanglement11 has not been in-
vestigated to date. To highlight the dynamical nature of this
quantum state, we study the one-particle spectra in a regime
where the f shell is half-occupied and the conduction band is
both half- and partially filled. The extended periodic Ander-
son model �ePAM� considered here is given by

H̄ = H + Ed�
i,�

ni�
d + Udd�

i

ni↑
d ni↓

d . �2�

In this work, we study the effect of electronic interactions in
the one-particle spectra of ePAM at T=0 on a hypercubic
lattice, where the bare electronic density of states �DOS�
becomes �0���= 1

��t� exp�− �2

t�2�,20 with t�=1 being the energy
unit. We will consider both the half-filled case, where all
bands are centered with respect to the Fermi level �=0, as
well as a �valence� regime where the filling of the conduction
band is fixed to �nd�=0.8.21

We focus on the Kondo regime where the Coulomb inter-
actions are not too strong and comparable to the strength of
the on-site hybridization V and the width of the conduction
band.19 With this choice, we shall underline the origin of an
orbital entangled state in Eq. �2�, providing a theoretical ba-
sis for future investigations on the electronic properties of
materials where localized electrons �characteristic of heavy-
fermion systems where the direct �f f� hopping is small� in-
teract with narrow conduction bands. This class of materials
includes, for example, Ce- �Ref. 22� and Eu-based23 com-
pounds as well as GdI2.24 The latter is the prototype material
where 5dz2 conduction electrons are strongly scattered by
localized 4f7 electrons. Also, of great interest in the context
of Eq. �2� are materials where both the localized electrons
and the electrons forming the conduction band carry large
magnetic moment,25 not to exclude multichannel solid-state
structures.26,27

To treat the dynamical effects of the strong intraorbital
Coulomb interactions and multiple-scattering processes pro-
duced by moderately strong, interorbital repulsions, we use
the dynamical-mean-field theory �DMFT�10 as an approxima-
tion to our ePAM problem �Eq. �2��. The DMFT solution
involves replacing the lattice model by a self-consistently
embedded �asymmetric� Anderson impurity model and a
self-consistency condition requiring the local impurity
Green’s function to be equal to the local propagator for the
lattice. Similar to what is obtained for the regular PAM,21 at
high dimensions, the local �f ,d� propagators of ePAM are
written as

Gii,�
d ��� = D̃	��

d��� −
V2

��
f ���
 , �3�

and

Gii,�
f ��� =

1

��
f ����1 +

V2

��
f ���

Gii,�
d ���� , �4�

where ��
	����+�−E	−
�

	��� �	= f ,d� and D̃�z�

�d�
�0���

z−� is the Hilbert transform of �0���.
In this work, we confine ourselves to the theoretical de-

scription in the paramagnetic phase of ePAM, where the
Green’s functions �Eqs. �3� and �4�� are computed using the
following relation for the correlated self-energies:


	��� = �
�
�N	�U	��n�� +

A	�
	�
�2����

1 − B	�
	�
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with 
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2
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being the second-order �in U	�� contributions and N	�=2
−�	�. In contrast to usual one-band �Hubbard model, PAM,
etc.� correlated problems, the atomic limit for the multior-
bital case contains local, interorbital correlation functions,
D	�.28 The equations for the parameters A	� and B	� are
explicit functions of U	�, D	�, and the average numbers �per
spin �� �n	�n	 and �n	

0�.29 The latter is the effective num-
ber of fermions in the 	 orbital corresponding to site-
excluded Green’s function G	

0��� �with �G	
0����−1

�Gii
	����−1+
	����. The above relations form a closed set

of coupled, nonlinear equations which are solved numeri-
cally until convergence is achieved.

The two-orbital iterated perturbation theory �IPT� �Eq.
�5�� is a multiorbital interpolative ansatz that connects the
two exactly soluble limits of the one-band Hubbard model
�HM� and the PAM model, namely, the uncorrelated �U	�

=0� and the atomic ��k
d =0� limits. It accounts for the correct

low- and high-energy behavior of the one-particle spectra
�see below� and the correlated Fermi liquid �FL� behavior for
the f electrons of PAM30 and the conduction band of the
HM31 in the large-D limit. Finally, for HM, it ensures the
Mott-Hubbard metal-insulator transition from a correlated
FL metal to a Mott-Hubbard insulator as a function of the
Coulomb interaction Udd.10 As shown below, the DMFT
�IPT� solution introduces nontrivial effects stemming from
the dynamical nature of the strong electronic correlations.
Namely, these processes lead to large transfer of spectral
weight across large energy scales in response to small
changes in the electronic parameters, a characteristic lying at
the heart of the anomalous responses of correlated systems.

III. RESULTS AND DISCUSSION

We now present our results. Let us begin with the regular
PAM. In Fig. 1, we show the corresponding one-particle
DOS for Uf f =2, V=0.6,32 and two distinct band fillings for
the conduction band. The f-electron DOS obtained at half-
filling n�

f =n�
d =0.5 is in very good agreement with numerical

quantum Monte Carlo �QMC� results for the same model.32

The charge gap at the Fermi level �EF�, the width of the
Kondo resonance, as well as the position of the incoherent
�Hubbard� bands near �= 2 are all well accounted for by
the IPT solver. We also perform calculations for n�

d =0.4 and
n�

f =0.5, where IPT results were proved to be in agreement
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with QMC calculations.21 Following the usual practice, the
band filling is achieved by adjusting self-consistently the
chemical potential � and the on-site energies E	. As seen in
Fig. 1, a metallic state is found in the asymmetric regime
�with ntot=1.8�, where the d- and f-spectral functions are
finite at �=0. As in Ref. 21, we find asymmetric one-particle
DOS for the f electrons in spite of its commensurate filling.
In agreement with QMC results,21 the Kondo peak at lower
binding energies increases and it is pushed toward EF. On the
other hand, its counterpart at positive frequencies is consid-
erably reduced, with the corresponding spectral weight being
transferred to the upper Hubbard band at ��2. The opposite
trend for the dynamical spectral weight transfer is found be-
low EF. Here, the one-particle spectra are transferred from
the lower Hubbard band �at high binding energies� to the
Kondo states near EF. Notice that similar effects are also
visible in the d-DOS; however, due to their intrinsic weakly
correlated nature, the conduction electrons are clearly less
affected by changes in the band filling. The dynamical trans-
fer of spectral weight found in the asymmetric regime of
PAM will be crucial for a concrete understanding of the non-
trivial evolution of the many-body correlated states of the
ePAM.

We now turn to the spectral properties of ePAM �Eq. �2��.
To reduce the number of free parameters of the extended

model H̄, we chose the same value for the intraorbital Cou-
lomb interactions, i.e., Uf f =UddU=2. Udf��U� will be
varied in steps to highlight the role of electron-electron in-
teractions taking place between different orbitals. To begin
with, we consider the Udf =0 limit of Eq. �2�, i.e., the peri-
odic Anderson-Hubbard model.33 At half-filling ��=0, E	=
−U /2−Udf�,19 the d-DOS is considerably modified, while
the f-DOS remains practically unchanged. This is fully con-
sistent with Anderson’s assumption1 that the f electrons are
weakly affected by electronic correlations taking place on
wide conduction bands. Surprisingly, the dotted �red� line of

Figs. 2 and 3 shows that this hypothesis is valid for narrow
conduction bands if Udd is not too large or away from the
strongly correlated Mott-Hubbard regime.19 On the other
hand, the conduction band is considerably influenced by the
Coulomb interaction Udd. As found for the HM,10 in Fig. 2,
we see the presence of Hubbard satellites and quasiparticle
�Kondo-like� resonances in the d shell. Similar effects are
also visible in asymmetric d-DOS of Fig. 3.

By switching on Udf, the f and d channels become locally
entangled due to dynamical charge and spin fluctuations,
which are proved to be well described within our scheme.
These quantum fluctuations are caused by two-particle inter-
orbital scattering processes �Udf� �see discussion below�,
whose effect is to reduce the coherent Kondo scale charac-
terized by the narrowing of the f ,d Kondo resonances. This
is accompanied by an enhancement of the incoherent Hub-
bard bands. Crossing points intrinsic of correlated electron
systems are visible in both channels. Correlation effects are
also present in the self-energies, implying the large effective
mass for the heavy electrons and the carriers in the conduc-
tion band. Our results �Figs. 2 and 3� suggest that in the limit
of very large Udf, both channels will show similar properties,
making it difficult to distinguish their intrinsic magnetic and
orbital fingerprints. This entangled multiorbital state is ex-
pected to have implications for spectroscopy �photoemission,
inverse-photoemission, tunneling, and optical measurements�
of real heavy-electron materials with almost half-filled
bands.

The dashed lines of Fig. 3 display our results in the vicin-
ity of a metal-insulator transition point. At Udf �1, the va-
lence band spans the Fermi energy in the asymmetric metal-
lic regime. As in Fig. 2, the lower and upper Hubbard bands
are enhanced by Udf. Interesting, however, is the evolution of
the Kondo resonance in the correlated �f ,d� channels. Note
that the strong asymmetric profile of the Kondo resonances
near EF is practically lost for Udf =1.5, indicating the forma-
tion of a multiparticle entangled state at low energies. Ac-
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FIG. 1. T=0 orbital resolved
density of states �f-upper and
d-lower panels� for the periodic
Anderson model �PAM� with
fixed Uf f =2, V=0.6, n�

f =0.5, and
two fillings for the conduction
band: n�

d =0.5 �dotted line� and
n�

d =0.4 �dot-dashed line�. Notice
the band-gap characteristic of
PAM in both channels.
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cording to our results, strong local fd entanglement11 restores
the particle-hole symmetry of the Kondo screening cloud,
driving the system into a continuous metal-insulator transi-
tion. Thus, the anomalous response shown in Fig. 3 appears
to be correlated with the proximity to a localization-
delocalization transition in ePAM and could have implica-
tions for critical QPTs in rare-earth compounds.34

The T=0 DOS of Fig. 3 shows that entangled �fd� quasi-
particles are formed at low energies in the asymmetric insu-
lating regime of ePAM. As seen in this figure, the insulating
state results from a delicate interplay between correlation-
induced low- and high-energy scattering processes taken
place in the upper d band. These, in turn, drive large spectral
weight transfer from intermediate �0.5���1.5� to higher
energies ��2. Given the profound similarities between the

two �f ,d� Kondo screening clouds, we argue that the Udf

=1.5 Kondo insulating state is driven by dynamical orbital
rehybridization35 which strongly enhances the low-energy
coherent scattering processes. This quantum effect might be
relevant in understanding the correlated nature of multichan-
nel quantum fluctuations,36 where orbital, charge, and
spin27,29,37 degrees of freedom are dynamically affected by
the competition between orbital dependent one-electron hop-
ping, orbital splittings, and electron-electron interactions.

Finally, the continuous enhancement of the many-particle
Kondo resonance can be used to understand the physical ori-
gin of orbital entanglement in ePAM and related models. We
notice that our results away from half-filling are complemen-
tary to those reported in Ref. 11. There it is found that by
reducing the number of electrons, the fd entanglement is
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FIG. 2. �Color online� T=0,
orbital resolved density of states,
f �d� upper �lower� panel, of the
extended periodic Anderson
model �ePAM� for n�

f =n�
d =0.5,

Uf f =Udd=2, V=0.6, and three
values of Udf: Udf =0 �dotted
line�, Udf =1.0 �dashed line�, and
Udf =1.5 �dot-dashed line�. �Our
results for regular PAM �solid
line� are plotted for comparison.�
The corresponding real �left� and
imaginary �right� parts of the self-
energies are shown in the insets.
Notice the enhancement of the
Hubbard bands and the narrowing
of the Kondo resonance with in-
creasing Udf. This is the finger-
print of dynamical multiparticle
entanglement, whose correlation
effects are encoded in the
self-energies.
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FIG. 3. �Color online� Orbital
resolved density of states at T=0,
with n�

f =0.5 and n�
d =0.4. We use

the same parameters as in Fig. 2,
i.e., Uf f =Udd=2, V=0.6, Udf =0
�dotted line�, Udf =1.0 �dashed
line�, and Udf =1.5 �dot-dashed
line�. The insets show the real
�left� and imaginary �right� parts
of the self-energies. Notice the
evolution of the low-lying
entangled electronic states across
the continuous metal-insulator
transition.
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monotonically suppressed due to an incomplete local Kondo
screening. As shown in Fig. 3, Udf restores the particle-hole
symmetry of the Kondo screening cloud near EF in both
channels. This, in turn, controls the formation of �df� orbital
singlets, explaining the relation between orbital Kondo
effect29 and local orbital entanglement. Our results call for
extensions of the DMFT treatment in order to quantify the
average and the variance of local and nonlocal concurrences
�the standard measurements of quantum entanglement� in a
way similar to what has been proposed on a recent study
addressing the formation of quantum entanglement in the
Anderson clusters.11

IV. CONCLUSION

In summary, we have studied the evolution of the one-
particle spectra of the ePAM using a two-orbital DMFT
scheme, providing a basis for future investigations of the
electronic properties of narrow-band materials. Consistent
with the Falicov-Kimball ideas, it is shown that interorbital

electron interactions strongly modify the correlated spectra.
We have found a route toward a Kondo insulating state
which is controlled by entangled multiorbital degrees of
freedom.36 Near the Kondo regime, a metal-insulator transi-
tion is shown to be nonorbital selective �both orbitals
become insulating simultaneously� and continuous. This
transition is driven by a correlation-induced orbital
rehybridization,35 which enhances the entanglement between
correlated channels. We clarify the formation of a coherent
orbital entangled state near the Fermi energy, demonstrating
the role of charge and spin fluctuations as a mechanism for
�local-� orbital-Kondo entanglement. Our description is
expected to have a wider application in multiorbital
systems22–25,27 where the degrees of freedom of individual
electrons in concert with electronic correlations determine
the nature of quantum fluctuations.
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